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Minimally Coupled FRW Cosmologies
as Dynamical Systems

Luis Lara1,3 and Mario Castagnino2

The dynamical evolution of FRW cosmologies, minimally coupled to a finite set of scalar
fields with an arbitrary potential, is studied. The general properties of the scale factor
and the scalar fields, which are independent of the potential, are determined. It is shown
that for k = 0, −1 the evolution of the Hubble function is growing, independently of
the potential, which allows expansive and contractive evolutions of the scale factor.
Moreover, if the potential can take negative values, cyclic universes are possible. In
the spherical geometry case, k = 1, the existence of expansive, contractive, or cyclic,
universes is possible, independently of the condition stated above, namely that the
potential would necessarily take negative values. Moreover, the existence of chaotic
solutions can be obtained via a fine-tuning.
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1. INTRODUCTION

This paper has a twofold motivation:

1. We continue our research about the cosmological models as dynamical
systems (see Castagnino et al., 2000, 2001, 2002), following the same
philosophy. Namely even if the numerical methods and experiments are
powerful tools for the comprehension of these systems, the obtained results
are only clues, not rigorous proofs, of the general properties that we
would like to attribute to these systems. So we have followed a different
route: using the theory of dynamical systems to search the mathematical
properties of each model, in such a way to prepare the way towards the
physical comprehension of these systems.
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2. To present to cosmologists a detailed study of FRW-cosmologies as dy-
namical systems. Cornish and Lewin (1996), Easther and Maeda (1999),
Charters (2001), Peebles (1993), and many others several authors have
studied the dynamical behavior of FRW cosmologies conformally or min-
imally coupled to a scalar field. Even before the nineties, for several rea-
sons the current models usually contains one (or many) scalar field with
an arbitrary potential V (ψ), e.g. power law potential, as in Linde (1983)
or Peebles and Vilenkin (1999a), Liddle and Scherrer (1999b), Kolda and
Lyth (1999c), inverse power-law potential, as in Ratra and Peebles (1988)
and Peebles and Ratra (1988), exponential potential, as in Ratra and Pee-
bles (1988) and Peebles and Ratra (1988), etc. Since the arrival of � > 0
in the late nineties, even more than before, models with arbitrary V (ψ)
appears very frequently in the literature. For example a very interesting
study with negative potential can be found in Felder et al. (2002) and we
will try to continue this line considering more general models.

Our final aim would be to offer the most general possible formalism with arbitrary
potential, many scalar fields, and k = 0, ±1, with the most complete account of
the dynamical properties of these cosmological models considered as dynamical
systems, e.g. the conditions for the existence of cyclic universes (Steinhardt and
Turok, 2002a,b) or the oscillatory behavior of the scale factor.

The paper is organized as follows: in Section 2 we present the FRW model
with n scalar fields minimally coupled, with a generic potential. In Section 3,
we find the fixed point of the corresponding dynamics. In Section 4, we find
the Lyapunov function for positive definite potentials. In Section 5, we study the
evolution of the scalar fields and their energy density. In Section 6, we present, a
very simple way to classify the different solution introducing the HV Z space of
the model. In Section 7, we find and study some particular oscillatory solutions.
In Section 8, we draw our conclusions.

2. COSMOLOGY WITH n SCALAR FIELD

In this work we study a spatially closed, flat, or open FRW minimally coupled
to n neutral scalar fields. The metric is given by:

ds2 = dt2 − a2(t)

(
dr2

1 − kr2
+ r2 d�2

)
, (1)

where t is the proper time (also known as cosmic time), k = 1, 0,−1, and d�2

is the element of volume of the unit spatial sphere (either plane or hyperboloid).
The Lagrangian density of the system is

L = LG + LM , (2)
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where LG = − 1
12R is the gravitational Lagrangian density (R is the Ricci scalar)

and

LM =
n∑

i=1

(
−1

2
∂µ ψi ∂µ ψi + 1

12
R ψ2

i

)
+ V (ψ1, . . . , ψn) (3)

is the Lagrangian matter density. The Ricci scalar is related to the scale factor a

by the equation

R

6
=

••
a

a
+

( •
a

a

)2

+ k

a2
, (4)

We have chosen 4πG
3 = c = 1 and the overdot indicates the derivative with respect

to proper time t .
The evolution equations for the fields ψi are the Klein Gordon equations

••
ψi + 3

•
a

a

•
ψi + ∂ψi

V (ψ1, . . . , ψn) = 0, i = 1, . . . , n, (5)

the evolution equation for the scale factor a is given by

••
a + 2 a

(
n∑

i=1

•
ψ

2

i −V (ψ1, . . . , ψn)

)
= 0, (6)

and the Einstein condition reads

−
( •

a

a

)2

− k

a2
+

n∑
i=1

•
ψ

2

i +2 V (ψ1, . . . , ψn) = 0. (7)

The energy density ρ and the pressure p associated with the scalar fields are

ρ = 1

2

n∑
i=1

•
ψ

2

i +V (ψ1, . . . , ψn),

p = 1

2

n∑
i=1

•
ψ

2

i −V (ψ1, . . . , ψn). (8)

and the state equations is w = p / ρ.

Let us introduce the variable change u = a2. Then

H =
•
a

a
= 1

2

•
u

u
, (9)
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where H is the Hubble function. Therefore Eqs. (5) reads

••
ψi + 3H

•
ψi + ∂ψi

V (ψ1, . . . , ψn) = 0, i = 1, . . . , n. (10)

and Eq. (6) becomes

•
H = k

u
− 3

n∑
i=1

•
ψ

2

i , (11)

and the Einstein constraint is rewritten as

0 = −H 2 − k

u
+ 2 V +

n∑
i=1

•
ψ

2

i . (12)

Then let us state a general property: from Eq. (11), when k = 0 or k = −1,
•

H < 0 and therefore it does not change sing and H has monotonous behavior
and therefore no oscillations in the scale factor, for any kind of potential and any
arbitrary number of scalar fields.

Integrating Eq. (11) we have

H (t) = H0 − 3 f (t) + k g(t), (13)

where H0 is Hubble function at the initial time t = 0, and the function f , g are

f (t) =
n∑

i=1

∫ t

0

•
ψ

2

i (t ′) dt ′ >= 0,

g (t) =
∫ t

0

1

u(t ′)
dt ′ >= 0,

Then, as k = −1, 0 if H0 ≤ 0 we have H < 0 for every time.
Since a(t) = a0 exp

∫ t

0 H (t ′) dt ′, we have

a(t) = a0 eH0 t ek
∫ t

0 g(t ′) dt ′ e−3
∫ t

0 f (t ′) dt ′ >= 0.

Then if we want that the scale a would vanish (Felder et al., 2002; Steinhardt
and Turok, 2002a,b),4 at a finite time t1 it is necessary that either

∫ t1
0 f (t ′) dt ′

would be divergent or, when k = −1, 0, that
∫ t1

0 g(t ′) dt ′ or
∫ t1

0 f (t ′) dt ′ would
be divergent.

4 This is the condition for the big-crunch of for cyclic universes, considered here in a more general
case than in Felder et al. (2002).
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3. FIXED POINT

The fixed point in space {H ∗, ψ∗
i ,

•
ψ

∗
i }, i = 1, . . . , n, of the system are given

by Eqs. (10) and (11), satisfying condition (12), and they exist only in the flat-space
case k = 0. They satisfy

•
ψ

∗
i = 0, i = 1, . . . , n,

∂ψi
V (ψ∗

1 , . . . , ψ∗
n ) = 0, i = 1, . . . , n,

but, from the Einstein condition, we have that

H ∗ 2 = 2 V (ψ∗
1 , . . . , ψ∗

n )

so there are fixed points only in the case V ∗ = V (ψ∗
1 , . . . , ψ∗

n ) ≥ 0 and
∂ψi

V (ψ∗
1 , . . . , ψ∗

n ) = 0.

In these fixed points the energy ρ takes the value V ∗ and the pressure p takes
the value −V ∗ ≤ 0 and w takes the value −1. In the fixed point, the universe
always is expansive and the evolution of the scale factor a is exponential when
V ∗ > 0. Finally it is easy to demonstrate that the fixed points are saddle-points.

Let us give a simple example for the systems with fixed points the potential
around these points must be in the simplest case a polynomial of degree two

V (ψ1, . . . , ψn) = V ∗ +
n∑

i=1

wi (ψi − ψ∗
i )2

where the coefficients wi are such that the Hessian at the fixed points would be
positive. The fluctuation around these points can be studied with the methods of
papers (Castagnino et al., 2002, 2003).

4. LYAPUNOV FUNCTION

In this section we introduce a Lyapunov function to demonstrate that the
scale factor oscillations are only possible when k = +1, for any non-negative
potential. Considering the potential V is non-negative definite, we can define a
simple Lyapunov function as

L = u = a2, (14)

which also is definite non-negative. Its derivative, a long a solution curve, can be
found from Eq. (12), that we can write as

•
u = ±2 u

(
− k

u
+ 2 V +

n∑
i=1

•
ψ

2

i

) 1 / 2

. (15)
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Then we have the following cases

(i) k = −1. Let us first consider the case
•
u (t0) > 0, then we must take the

+ sign in the last equation, and
•
u never vanishes so u is monotonous and

therefore a Lyapunov function. On the contrary, if
•
u (t0) < 0, we must

take the sign − and we have a contractive solution. Then
•
u vanish only if

u = 0 which corresponds to a singularity and therefore to the end of the
evolution, thus u is also monotonous.

(ii) k = 0. Let us first consider the case
•
u (t0) > 0, again we must take the +

sign. According to the discussion about the fixed point,
•
u can only vanish

asymptotically if V ∗ = 0 , namely
•
u does not vanish for finite times and

therefore u is monotonous. In the other case, the evolution is contractive
if,

•
u (t0) < 0, and we must take the − sign. This sign cannot change until

a time where u = 0. There, according to what we have said about the fixed

points,
•
u vanishes asymptotically if V ∗ = 0, namely

•
u does not vanish in

finite times and therefore in both cases u is monotonous.
(iii) If k = +1,

•
u can vanish and therefore we cannot say if it has a monotonous

behavior. So only in this case u can correspond to an oscillatory
solution.

5. SCALAR FIELD EVOLUTION

In this section we study the qualitative behavior of the scalar fields and the
energy density, for an arbitrary potential. As the potential remains arbitrary we
cannot show the detailed evolution but we can find its qualitative properties. Let

us consider n field with potential V (ψ1, . . . , ψn) and Eqs. (10), multiplied by
•
ψi

and added in indices i = 1, . . . , n, namely

E = ρ (ψ1, . . . , ψn,
•
ψ1, . . . ,

•
ψn) +

n∑
i=1

∫ t

0
3 H

•
ψ

2

i dt ′ , (16)

where ρ = 1
2

∑n
i=1

•
ψ

2

i +V is the energy density and E is a integration constant.
Then, the variation of the energy density along a trajectory is

•
ρ = −3 H

n∑
i=1

•
ψ

2

i , (17)

so the sign of
•

ρ is completely defined by the sign of H. Let us consider the
particular case V ≥ 0 and therefore from Eq. (8) the density is not negative. While
the sign of the Hubble function would be non-negative, ρ would be decreasing
as ψ2

i , i = 1, . . . , n, and the density ρ will converge to a constat ρ∞ either zero
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or positive. As we show in Section 2 when k = −1, 0, the dynamic is relatively

simple since
•

H ≤ 0. When k = 1 the dynamic is more complex and it will be
discussed it in the next section, so in the next paragraph we will only consider the
problem of finding the value of ρ∞ when k = −1, 0.

(i) If the ρ∞ = 0, the potential V → 0 and the kinetic terms
•
ψ

2

i / 2 → 0, and

therefore ψi → cont., and thus
••
ψi → 0. From Klein Gordon equation

we conclude that ∂ψi
V → 0. Then the trajectories go to a minimum

potential, which is zero and therefore also the pressure p → 0 but w

has no limit. From Eq. (12), we see that when k = 0, the trajectories
go to a fixed point. When k = −1, using the properties of the Lyapunov
function contained in Eq. (14), we see that u → ∞ and H → 0. Then, the
oscillatory or monotonous behavior of the fields depends on the properties
of the potential.

(ii) If ρ∞ > 0, since ρ has a monotonous behavior, considering Eq. (17), we

conclude that H → 0 and/or
∑n

i=1

•
ψ

2

i → 0. If then kinetic terms vanish,
and therefore ψi → 0. The fields evolve in such a way to make V a
minimum, but since ρ∞ > 0, this minimum is Vm = ρ∞ > 0 and w =
ρ /p = −1; so we have inflation. Then from Eqs. (11) and (12), we

conclude that H → H∞ > 0 and
•

H → 0.

(iii) Finally we have the case ρ∞ > 0. If H → 0. Then using the Eq. (12), we

see that the only possibility is k = +1 since V, u,
∑n

i=1

•
ψ

2

i are positive.
In Section 7 we will consider the particular u = const.

When H is always negative the universe evolution is a contraction.
This case has being deeply studied in Felder et al. (2002), Steinhardt and
Turok (2002a,b).

(iv) If ρ → ∞ then V → ∞ and / or
∑n

i=1

•
ψ

2

i → ∞ but in both cases from
Eq. (12) we conclude H → −∞, in which case the universe remains

trapped in the singularity a = 0 at a finite time t1 since
•

H < 0 and, from

Eq. (6),
••
a < 0.

(v) If ρ → ρ∞ > 0, as ρ goes monotonously to a finite constant, then
•

ρ → 0.

From Eq. (17), as H < 0 and decreasing then
•
ψ

2

i → 0, and therefore

ψi → cont., so
••
ψi→ 0 and using Klein Gordon equation we conclude

that ∂ψi
V → 0, i = 1, . . . , n. When k = 0, from Eq. (11) we have H →

−α2, then u decreases exponentially to zero.

On the contrary if k = −1, from Eqs. (11), (17),
•

H � −1 / u. Then if u

would tend to a non-vanishing constat we would have H → −∞, but this is
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Fig. 1. H, V, Z space for V > 0.

a contradiction since
•
u = 0 because u is constant. Then the only possible

alternative is that u → 0, in which case from Eq. (12), we do have H → −∞.

6. HVZ SPACE

Let us qualitatively describe the solutions as curves in a space with vari-
ables {H,V,Z}. In this section we consider that the only solutions with physical

interest are those that
•
a (t = 0) > 0 namely those with an expansive initial be-

havior. Then we define a simple tridimensional space of variables H, V , and

Z = 1
2

∑n
i=1

•
ψ

2

i = 0 (see Figs. 1–3) where H varies in the interval (−∞, ∞),
Z is non-negative and the potential V takes values in the interval (Vmin, ∞), where
Vmin is global minimum. We can rewrite Eq. (12) as

H 2 = H 2
0 − k

u
, (18)

where

H 2
0 = 2 ρ , (19)

and the density of energy is rewritten as

ρ = Z + V.
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Fig. 2. H, V, Z space for V = 0.

Fig. 3. H, V, Z space for V < 0.
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Then, using these variables H, V, Z from the properties of fixed points we can
deduce that, when k = 0, the only fixed point is H ∗

± = ±√
2 V ∗, V ∗ ≥ 0 and

Z∗ = 0.
Using Eqs. (6) and (8) we have

••
a = 2 a (V − 2Z) = 0.

From Eqs. (8), the plane V,Z has two relevant separatrices (not shown in
the figures): one corresponds to p = 0 defined by Z = V , and therefore, in the
region Vmin < V < Z, the pressure is always positive or it is negative if V > Z.

The second separatrix is defined by V = 2 Z that corresponds to
••
a = 0, then,

if Vmin < V < 2 Z we have
••
a < 0 ; and if V > 2 Z we have

••
a > 0. We easily

understand that in the intersection of these regions
••
a > 0 implying that p < 0 ,

for any potential since V > 2 Z > Z.

The Eq. (19) defines two surfaces �± in space H, Z, V, namely

H0 = ±
√

2 ρ .

When V > 0 (Fig. 1) the surfaces �± have neither mutual intersection nor
with the plane H = 0. If the potential can take the value V = 0 (Fig. 2) then �±
intersects in a vertex defined by (H = 0, V = 0, Z = 0). When the potential can
take negative values, V < 0 (Fig. 3) the surfaces intersect in a curve γ on the
H = 0 plane.

According to the values of k we have the following cases:

(i) From Eq. (18) we can see that when k = 0 the solutions are contained
either in �+ or � .

(ii) Moroever from the same equation, when k = −1 the solutions are con-
tained in the interior of surfaces �+ and �−.

(iii) And when k = 1 the solutions are contained in the exterior of surfaces
�+ and �−.

Combining V > 0, V = 0, V < 0 with k = −1, 0, 1 we have nine different
cases.

Cases 1 and 2—When k = 0, and V >= 0, (see Figs. 1 and 2), the solutions
cannot go from �+ to �− since they do not intersect (see Fig. 1) or they intersect
just in a fixed point (Fig. 2). From Eq. (11) and Eq. (17), the trajectories contained
in �+ evolve in the direction in which H decrease, ρ decrease and therefore Z and
V asymptotically converge to the vertex defined by the fix points (H ∗, V ∗, Z∗), but
the universe can also be expansive, since we may have decreasing H > 0, then
the scale factor has only two possibilities: either u → U > 0 (a finite positive
value of u) or u → ∞. The solutions in �−, using Eq. (11) and (17) evolve in
the direction that H 2 and ρ grow, these correspond to contracting universes that
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will collapse in a finite time t1, namely limt→t1 a = 0 and limt→t1 H = −∞ (see
Castagnino et al., 2000, 2001, 2002; Felder et al., 2002; Steinhardt and Turok,
2002a,b; Calzetta and El Hasi, 1993, 1995; Bombelli et al., 1998, 1999). The
case V = 0 is described in Fig. 2 where we have drawn on illustrative evolution
corresponding to the oscillatory field case.

Case 3—Let us now consider the case when k = 0 and there exists a domain
where V < 0, (see Fig. 3) then the trajectories begin in �+ and we have a universe
expansion. As H decreases the trajectory intersects the curve γ , then H changes
sign and the trajectory approach �−, where the evolution of the universe is a
contraction that finally collapse as a = 0. Then only if the potential take negative
values the universe can have an expansive phase followed by a contacting one and
to collapse at a finite time (e.g. Felder et al., 2002; Steinhardt and Turok, 2002a,b).

Case 4—When k = −1 and V > 0, (Fig. 1) from Eq. (18), we see that the
expansive solutions are contained in a unbounded domain v+ limited by the lower
bound �+ and the planes Z = 0 and V = Vmin, while the contracting trajectories
belong to a volume v− with the upper bound �−. In both cases the trajectories
are confined either in the upper region v+ (H > 0) or in the lower region v−
(H < 0), since �+, �− do no intersect each other. The solutions contained in

v+, from Eq. (11), asymptotically converge to surface �+ and since
•

H < 0, the
energy density decrease and therefore Z and V also decrease, in such a way that
necessarily the trajectory end in the fixed point. Instead, for the trajectories of v−
H 2 increases as well the energy density, V, and Z. The trajectories converge to
�− as limt→t1 a = 0. Even if the trajectories follows the sense of the decreasing
of H , a trajectory cannot go from v+ to v− since the regions and v− and v+ do not
intersect.

Case 5—The case k = −1and V = 0 (see Fig. 2) is the limit case of the
preceding one.

Case 6—When k = −1 and there is a domain where V < 0, the universe
may have an expansion period and then collapse, which correspond to go from
volume v+ to volume v−, the transit from one region to the other take place in the
plane H = 0 in a domain defined by the curve γ , and the segments Z = 0 and
V = Vmin. This surface contains all the points where the evolution changes from
expansive to contractive.

Cases 7, 8, and 9—When k = +1, the sign of H is not fix and the trajectories
belong to the exterior domain limited by �±. Then we can have expanding,
collapsing, or oscillatory solutions for the scale factor. It is important to remark
that with this geometry it is not necessary that the potential would be negative for
the existence of cyclic universes. In our previous work on Brane dynamic (Lara
and Castagnino, 2004) the oscillatory solution corresponds to k = 0 and C < 0,

since the result of a spheric geometry can be reproduced adding dark radiation in
the usual spatially flat model.
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7. PARTICULAR SOLUTIONS

7.1. Oscillatory Solution for the Scalar Fields

Let us consider a potential containing quartic terms for each field and also
quartic interaction terms (Castagnino et al., 2000, 2001, 2002; Cornish and Lewin,
1996), precisely

V = V0 +
n∑

i=1

(
m2

i

2
ψ2

i + �i

4
ψ4

i

)
+

n∑
i, j=1;i 
=j

λ2
ij

2
ψ2

i ψ2
j , (20)

where V0 is the cosmological constant.
To simplify our analysis let us only consider two coupled fields. Let us

consider a choice of the parameter such that a period of time I where H � 0
would exit or better considering Eq. (10)

| 3 H
•
ψ1 | � |

••
ψ1 |, ∣∣( m2

1 + λ ψ2
2 + �1ψ

2
1

)
ψ1

∣∣ ,
| 3 H

•
ψ2 | � |

••
ψ2 |, ∣∣(m2

2 + λ ψ2
1 + �2ψ

2
2

)
ψ2

∣∣ .
Then Eqs. (10) can be approximated as

••
ψ1 + (

m2
1 + λ ψ2

2 + �1 ψ2
1

)
ψ1 = 0, (21)

••
ψ2 + (

m2
2 + λ ψ2

1 + �2 ψ2
2

)
ψ2 = 0, (22)

namely the equation studied by Chiricov (1979), Chirikov and Shepelyansky
(1981). Then in period I the behavior of the scalar fields may be chaotic, precisely
transitorily chaotic, since it only correspond to period I (for a numerical see
Easther and Maeda, 1999; Felder et al., 2002). This transitory chaotic behavior
can happen either in the transition between the expansive and contractive phases in
the geometries k = −1, 0, 1 or as the transition between two inflationary phases
in the spheric geometry k = 1, as follows from the equations of the previous
section. As a numerical example it is easy to verify the existence of this kind of
behavior in the models with the following parameters: m 1, 2 = 1, � 1, 2 = 0, λ =
30, ψ1(0) = 0,

•
ψ1 (0) = 1, ψ2(0) = 1,

•
ψ2 (0) = 0. This transitory chaos in the

fields and therefore in the density and the pressure, could be useful to explain
the homogeneity of the spacial universe avoiding unnecessary fine tunnings in the
initial conditions.

7.2. Periodic Solutions for the Scale Factor

In Sections 5 and 6 we have shown the possible existence of periodic solutions
when k = +1. As an example let us consider a FRW with just one scalar field,
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k = +1 and the potential V = V0 + 1/2 ψ2 where for the sake of simplicity and
the scale invariance of the equations we have taken the field mass m = 1. Using
Eqs. (10), (11), and (12 ) we have

••
ψ + 3 H

•
ψ +ψ = 0, (23)

•
H = 1

u
− 3

•
ψ

2

, (24)

0 = −H 2 − 1

u
+ 2 V0 + ψ2 +

•
ψ

2

. (25)

To find a periodic solution we make the ansatz

| 3 H
•
ψ | � |

••
ψ |, | ψ | , (26)

Integrating Eq. (23) we obtain a particular solution ψ = ψ0 sin t . Now considering
a very small oscillation amplitude with respect to u, u0 we obtain

u = u0 + ε f (t),

|ε f (t)| � u0. (27)

then Eq. (24) reads

•
H = k

u0
− 3

•
ψ

2

0 sin2 t .

Integrating we obtain

H = C1 + t

u0
− 3

2
ψ2

0 t + 3

4
ψ2

0 sin 2 t,

where C1 is the integration constant that we will take equal to zero. Since we are
trying to find oscillatory solution let us take the initial condition satisfying the
equation ψ2

0 = 2
3 u−1

0 , then

H ∼= 3

4
ψ2

0 sin 2 t, (28)

Putting all these approximative results in Eq. (25) we obtain

V0 = 1

6

1

u0
.

Now it is easy to show that these approximation satisfy the ansatz of Eq. (26).
Then in this case V0 is completely determined and also the particular oscillatory
solutions for H and ψ.
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Finally, using Eqs. (27) and (28) it turns out that ε f (t) = − cos 2 t + α

where α is an arbitrary integration constant that we can take it equal to zero, since
u0 we can change by u0 − α.

7.3. Solution with Stationary Energy Density

In the case of closed universe k = +1, with n scalar field an a generic potential
V (ψ1, ..., ψn), we will see if it is possible that the energy density, of the kinetic
terms, would remain approximately constant along a solution curve. Then we call

C = 3
n∑

i=1

•
ψ

2

i
∼= const. (29)

Using Eq. (11) and the definition of the Hubble function, we find the system

•
H ∼= 1

u
− C, (30)

•
u = 2 uH ,

with fix point H ∗ = 0, u∗ = 1/C. Via a simple study of the vector field of
Eqs. (30) we can see that this fixed point is a center, such that in its neighborhood
oscillatory solution for the Hubble function may exist as well as for the scalar
factor a(t).

As a example, let us consider a very simple case where there is exact con-
servation of the kinetic energy. Let us also consider two scalar fields ψ1, ψ2 and
the potential V = V0 + m2 / 2 (ψ2

1 + ψ2
2 ) and initial condition such that u = u∗.

Using these conditions and integrating the Klein–Gordon equation for both fields
we obtain

ψ1, 2 = α 1,2 sin m t + β 1,2 cos m t

where α 1, 2 and β 1, 2 are integration constants. Taking into account the fields of
Eqs. (11) and (12) we obtain

α1 = β2 = ±
√

2 V0

m
,

α2 = β1 = 0 ,

and the stationary solution u∗ = ( 6 V0)−1, where the kinetic energy density is
V0 / 2, the energy density is ρ = 2 V0 and the pressure p = −V0. It is interesting
to observe that the obtained solution is a limit cycle, namely an isolated periodic
solution for each component of the field when the Hubble function vanishes.
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8. CONCLUSION

In this work we have find and developed a set of properties of the cosmological
FRW models coupled with n minimally coupled scalar fields and an arbitrary
potential. We have rigorously proved that the plane and hyperbolic geometries
only have the following evolution for the scale factor:

(i) Expansive.
(ii) Collapsing in a monotonous way.

(iii) A expansive phase followed by a contractive one and then a collapse that
may eventually generate a cyclic universe (Steinhardt and Turok, 2002a,b)
which is only possible if the potential takes, in a finite domain, negative
values.

The oscillatory behavior of the scale factor appears only in the spheric ge-
ometry k = +1. In this geometry expansion and contraction of the scale factor are
also possible, and these alternatives depend on the initial conditions.

We hope that these results would be useful to obtain a better understanding
of the properties of the models endowed with different kinds of potentials.
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